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Abstract

Time-correlated single photon counting has recently been combined with mode-

locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy

emissions of single molecules in a flow stream. Maximum likelihood (ML) and least

squares methods agree and are optimal when the number of detected photons is large

however, in single molecule fluorescence experiments the number of detected photons

can be less than 20, 67% of those can be noise and the detection time is restricted to 10

nanoseconds. Under the assumption that the photon signal and background noise are two

independent inhomogeneous Poisson processes, we derive the exact joint arrival time

probability density of the photons collected in a single counting experiment performed in

the presence of background noise. The model obviates the need to bin experimental data

for analysis, and makes it possible to analyze formally the effect of background noise on

the photon detection experiment using both ML or Bayesian methods. For both methods

we derive the joint and marginal probability densities of the fluorescent lifetime and

fluorescent emission. The ML and Bayesian methods are compared in an analysis of

simulated single molecule fluorescence experiments of Rhodamine 110 using different

combinations of expected background noise and expected fluorescence emission. While

both the ML or Bayesian procedures perform well for analyzing fluorescence emissions,

the Bayesian methods provide more realistic measures of uncertainty in the fluorescent

lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in

fluorescent lifetime estimates in current single molecule flow stream experiments where

the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be

automated for applications in molecular biology.
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Introduction

In the last four years it has become possible to record temporal data from

individual fluorescent dye molecules in flow streams and to estimate single molecule

fluorescent lifetime and energy emissions (21). Perfection of this technology should

significantly enhance the analytic sensitivity of fluoroimmunoassays, capillary zone

electrophoresis, flow cytometry, DNA fingerprinting, fragment sizing sequencing. Proper

application of the single molecule fluorescence techniques in these detection systems

requires accurate assessment of the uncertainty in the measurement of the molecule's

lifetime and energy emission. As a consequence, there is much interest in characterizing

the statistical properties of photon data collected in single molecule excitation

experiments (19).

Hall and Selinger (5) studied the general problem of decay lifetime estimation and

derived equations for the maximum likelihood (ML), method of moments and least

squares (LS) estimations of the parameters in an inhomogeneous Poisson process model

of photon detection in the absence of background noise. They also reported large sample

formulae for the variances of these estimators, and showed that the ML estimation

procedure was the most statistically efficient and that it was also mathematically

tractable. Peck et al. studied single molecule fluorescence detection with the signal and

background noise processes modelled as two independent homogeneous Poisson

processes and described an autocorrelation procedure for burst detection. Tellinghuisen

and Wilkerson studied the performance of ML and LS methods for estimating

fluorescent lifetimes using an arrival time model in the case where N, the numbers of

detected photons, is small and T, the observation time, is finite. They found that both

estimates were biased and that the variance of the ML estimate was formally divergent.

They suggest that the (N/N-I) bias in the reciprocal of the lifetime parameter could be

easily corrected and that statistical models parameterized in terms of this parameter were

more analytically tractable. Tellinghuisen studied the properties of least squares (LS)



page4: Brown,Zhang,McCollom;TR 94-03; Single Molecule Fluorescence Measurements

techniques for estimating fluorescent lifetimes in the presence of background noise using

Monte Carlo methods and partial derivative matrices to perform error analyses. He

reported that background noise reduced the precision in the lifetime estimate by an order

of magnitude and that this measurement precision could be recovered by incorporating

into the analysis a model of the background noise based on the properties of the detection

system studied in the absence of a fluorescent experiment.

In the study of photon bursts from single Rhodamine 110 dye molecules dissolved

in methanol, Tellinghuisen et al. compared the use of an approximate arrival time plus

background noise model analyzed with LS methods to an arrival time noise free model

analyzed by ML procedures. In their LS analysis the error in the reciprocal of the lifetime

parameter exceeded the N -½ expected for data collected over an infinite time interval in

the absence of background noise. Because the model analyzed with the LS methods

included background noise and because problems in the parameter estimation could be

readily diagnosed with contour plots of the minimum x 2 function, these authors

concluded that the LS approach offered the preferred means of analyzing the effect of

background noise in single molecule fluorescence experiments.

The principal analytic issues to be addressed are: (1) proper specification of a

probability model for photon detection from single molecules in the presence of

background noise; and (2) formulation of a statistical estimation procedure based on that

model which allows accurate determination of single molecule fluorescent emissions and

lifetime when emissions are low background noise is significant and the detection

intervaI is finite. There is significant evidence to suggest that detection of photon from

single fluorescent molecule may be modelled a Poisson process. Therefore, under the

assumption that the signal and background noise are two independent inhomogeneous

Poisson processes, we derive the exact joint probability density of photon arrivals in a

finite time interval from a single fluorescent molecule derive both ML and Bayesian

procedures for estimating the fluorescence lifetime energy emission and their associated
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uncertaintiesin termsof well definedprobability densities. We comparethe ML and

Bayesianmethodsin an analysisof simulateddata from RhodamineI10 for various

combinationsof expectedfluorescenceemissionsandbackgroundnoise.

Model Derivation

We assume that the arrival times of the photons from a single fluorescent

molecule are recorded in a finite interval [0, 7]. Let t, be the arrival time of the iIn

photon, where 0 < t_..... < t_ < T. We assume that the number of photons detected from the

fluorescent species is a Poisson process with continuous intensity function k(t)= Ae -_/_ ,

for t> 0. The parameter , is the average fluorescent lifetime and A is the number of

photons detected at time 0. Let A(t)= _k(u)du. The quantity A(T)is the average

fluorescence emission in the observation interval (0, 7]. We assume that the number of

background photons detected is a Poisson process with a continuous intensity function

q(t), t > O. Forms of q(t) which have been reported include the constant function and a

function composed of a linear combination of two Gaussian functions, and exponential

function and a constant. Let Q(t)= _q(u)du. We assume that q(t) is known from

background photon measurements made on the detection system in the absence of the

fluorescent molecules. We assume also that

----QO

(1)

Equation (1) is a technical assumption which ensures that the joint, conditional and

marginal probability densities of the arrival times are well defined. Under the assumption

that the fluorescence emission and background noise processes are independent, the

number of photons arriving from both is a Poisson process with intensity function

k(t) + q(t).
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To derive the joint probability density of photon arrival times we consider the

event that I photons arrive in (0, T] at times 0 < tI < t2 ..... < t/< T. This probability density

is defined by the events that no arrivals occur in the intervals (O, tl],(ti+Ati,ti+l] for

i= ]..... l-l and (t t +At/,T], and that exactly one arrival occurs in each of the intervals

(t,,t/+At/] for i= I.... ,I. By the definition of an inhomogeneous a Poisson process the

following statements describe the probabilities of these events:

Pr(No arrival in (0,tl]) = exp{- _1 X(u) + q(u)du}

Pr(No arrival in (ti + Ati+l] ) = exp{- _i+1 3.(u) + q(u)du}
i+At i

_i +Ati X(u) + q(u)du _ +Ati k(u) + q(u)du}Pr(One arrival in (t/,t i + At/]) = exp{- '

(2)

The intervals are nonoverlapping and thus, independent by the basic axioms of a Poisson

process. The joint probability of the events is therefore,

I

f(t[ x, A)H At i =

i=1

I-1

fi+l T
exp{- ._' X(u) + q(u)au} H exp{- at,_, +at, _.(u) + q(u)du} exp{- _., +At, L(u) + q(u)du}

i=1

I _ i+Ati _ i+Ati_'(lt) FI
×H X(u)+q(u)duexp{- +q(u)du}+ o( Ati)

i=1 "i i=I

(3)

I

where t=(q,t 2 ..... t/) r. Dividing both sides by HAt/ and letting Ati-_0 for each i
i=1

the joint probability density of the arrival times

gives

I

f(tl r, A) = H [X(t/) + q(t/)1 exp {- _' _.(u) + q(u)du} exp {- (_.(u) + q (u)du}
i=l "TI

I-1

x]--l'ex . ¢¢i+1
11 p/-.[ _.(u)+q(u)du}
i=1 ¢

(4a)
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I

: l'-I[_.(t,)+q(ti)]exp{- _.(u)+q(u)du} (4b)
i=1

for 0 < t 1 < ..... < tt < T, where we used the fact that

_i+At_ _( ) ( )duu+qu
•ni

At i
--_ X(ti) + q(ti) (5)

as Ati _ 0, for all i.

Equation (4) shows that the joint probability density of the photon arrivals may be

represented without the need to bin the data. This derivation may be viewed as taking the

number of bins equal to the number of detected photons, placing the ith photon arrival in a

bin of width At,, and letting the widths of all bins go to zero. From equation (4b) it

appears that the t_ 's are a collection of independent observations on the interval (0, T],

however, they are not. Their joint probability density is defined on ri subject to the

constraint that 0 < t I < t2..... < t I < T < or. In particular, equation (4a) shows that the arrival

times are a Markov process in that the conditional probability density of t, depends only

on t,_l. That is, we may write

I

f(t Ix, A) : I-I f(tilti-1)
i=1

where f(tilti-l)=(_,(ti)+q(ti))exp{-t i_ L(u)+q(u)du} and t, is defined on the interval
-I

(t__l, oo). The practical reason for observing that the arrival times obey a Markov process

is that this representation of the joint arrival time density suggests a simple method of
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simulating photon arrival times for an inhomogeneous Poisson signal plus noise model

(Lewis and Schedler, 1977). This algorithm is presented in the Appendix.

Conditional Arrival Time Probability Density

The observed photon arrival time data may also be analyzed in terms of the

conditional arrival time probability density. That is, given I photon arrivals detected in

(0, 73 , what are the probable locations of the arrivals in that interval? The number of

photons arriving in (0, T], N(T), is distributed as a Poisson random variable with parameter

A(T). From equation (4) and the properties of a Poisson process the conditional arrival

time probability density is

f(t[x,A,l) = Pr{0 < q <..... <t! <_T and N(T)= I} /Pr{N(T) = I}

I

U [2.(ti) + q(tl )]exp {-_: k(u) + q(u)du}
i=1

[A(T) + Q(T)] 1 exp{-[A(T) + Q(T)]} / I!
(6)

1

l !U [_(t i) + q(ti)]
i=I

[A(T) + Q(T)] I

In the case where the Poisson intensity parameter is constant and the observation interval

is divided into k bins, equation (6) is a k-nominal probability mass function.

Statistical Analysis of Experimental Data

Maximum Likelihood Approximation of the Fluorescent Lifetime and Energy Emission

Probability Densities.
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From the joint arrival time density we can estimate r and A by the method

maximum likelihood. The log likelihood based on the joint arrival time density is

I

log f(tl T, A) = _ log(k(ti) + q(t i)) - [A(T) + Q(T)] (7)
i=[

and the ML estimates can be obtained numerically by finding the values of T and A

which maximize Equation (7). Similarly, the log likelihood for the conditional arrival

time density in equation (6) is

I

log f(tZ _, A, Z) = Z l°g(_'(ti)+ q(ti )) - 1 log[A(T)+ Q(T)] (8)

i=I

+ log(/!).

Equation (8) may also be used for ML estimation of T and A.

Under the assumption that A is large we can derive approximate probability

densities for _ and A. Let rt_ = (_,,_)T be the ML estimates of z and A respectively and

define x = (T, A). The observed information matrix G is the 2x2 matrix whose elements

are Gt, = 021°gf(t[z'A)or2 GI 2 = G21 = 02l°gf(t[z'A) and G22- c32 l°gf(tZz'A) It follows
' OtOA _A 2

from the large sample theory of ML estimates that the approximate joint probability

density of _ and A is the Gaussian density defined as

._l(X,A[t) - 1 I exp{_½(x__t)rV_l(x__t)}

2rtlVI_ (9)

where v =-G -1 and [vl is the determinant of v. The marginal probability density of

jT(_l t), is the Gaussian density with mean _ and variance equal to vi l, i.e. the I, I element
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of v. To compute the approximate probability density of A(T), we define the

transformation

Y= = A
(10)

and its Jacobian

J=I 1 0
A[I - (1 + T)e-T/*] z(I - e-TI_)

The determinant of J is lJI= x(l-e-T/_). Applying the change of variables in equation

(10) to _(_, AIO under the assumption that is A large, shows that the approximate joint

probability density of + and A(T) is the Gaussian density defined as

]2(_, A(r)] t) - 1 I exp{-½(y- gy)rE-l(y_ p.y)}

2_1Y-Ii (11)

where x = jvj r. The approximate marginal probability density of A(T) is the Gaussian

density with mean A(73 and variance 222.

Bayesian Estimation of the Fluorescent Lifetime and Energy Emission Probability

Densities.

To conduct a Bayesian analysis of the lifetime and energy emission estimation

problem we assume that knowledge about _ and A known prior to the experiment can be

summarized in terms of a prior probability density. Since the fluorescent lifetime is
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independentof A, the number of photons observed at time O, we write the joint prior

density of _ and A as the product of two locally uniform prior densities defined

as f(z, ,4) = f(Qf(A) where,

f(A)={(A2-oAI)-I

T I <x-<T 2

otherwise

A 1< A < A 2

otherwise

(12)

The values of rl,_2,Ai and A2 are defined from known properties of the particular single

molecule experiment. Applying BaTes theorem equations (4) and (12) yields the joint

posterior density of

fl (x, A[ t) = f( _)f(A)f(tl x, A)
f(t) (13)

where f(t) = _ [ f(T)f(A)f(ttx, A)dAdT.
rA

Equation (12) shows that the locally uniform prior densities can be used to

constrain the parameter valves to a region in the _- .4 plane which is physically plausible.

Equation (I3) shows that the uncertainty in the parameter defined by the Bayesian

analysis is the product of the ranges defined by the prior densities and the uncertainty in

or information about the parameters derived from the experiment, and summarized in the

likelihood function f(tl_, A). That is, the Bayesian analysis combines prior information

with that collected in the experiment to determine the uncertainty in the model

parameters. Because the prior density is uniform on the _-/I plane and because the

likelihood and log likelihood are equivalent summaries of the experimental information,
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if the experiment contains a lot of information about the model parameters then the

uncertainty in the model parameters defined by the ML and Bayesian analyses will agree.

The posterior probability density of the fluorescent lifetime is obtained by

integrating (13) with respect to A to yielding

fl (tit) = _ fl(_, AIt)dA (14)
A

Since we are interested in A(T) instead of .4 we apply the change of variables defined by

equation (10) and find that the joint posterior probability density of the fluorescent

lifetime and fluorescent emission is

1

f2(x, A(T)It) = _ J](_, A(T)_-I(1 - e- r/t)[ t) (15)

The marginal posterior density of A(T) is defined as

f2(A(T)I t) = _f2 (x, A(T)I t)dx (16)

Equations (14) and (16) define the uncertainty in the fluorescent lifetime and energy

emission respectively in terms of probability densities without having to make large

sample assumptions. The respective modes, medians and means of/](rl t) and fz(A(T')I t)

may be used as point estimates of T and A(T).

Simulation Study of Rhodamine 110 Single Molecule Fluorescence Detection

We compared the ML and Bayesian methods in a study of simulated single

molecule fluorescence experiments for Rhodamine 110 assuming an expected fluorescent
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lifetime and detection interval of 4.2 and 10 nanosecondsrespectively based on

Tellinghuisen,et. al. We simulatedthreelevelsof expectedbackgroundnoisefraction:

high = 0.70, moderate= 0.35 and none= 0 combinedwith four levels of expected

fluorescenceemission: low = 19.1, medium =191, moderate=952 and high =3812

photons10nanoseconds.Theseexpectedfluorescenceemissionlevelsarethe valuesof

A(T) obtainedwith A set respectively to 5, 50, 250 and 1000 with T =4.2 and r=10. We

assumed q(t)= k n , a constant function, whose value was determined for any given

specification of the noise fraction and expected fluorescence by the relation

nf - knT

A(T) + _.nT

where nf is the expected background noise fraction and ?_nT = Q(T).

For each combination of nf and A(T)we simulated 3 detection experiments (36 in

total) using the algorithm defined in the Appendix. ML estimation was carried out by a

combination quasi-Newton's method and local search procedure and the Bayesian

methods by rectangular integration procedures. For the Bayesian analysis we took

_l = 0 and _2 = 12 nanoseconds in the prior density forf(_). Given previous reports on the

fluorescent lifetime of Rhodamine 110, it is reasonable to assume that T would lie in this

interval. For f(A) we chose four different representations for both A1and A2 depending on

value of A used in the • simulations. These were

A A1 A2

5 0 10

50 0 100

250 150 350

1000 750 1250
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Maximum Likelihood Analysis

As nfdecreased and efincreased, the precision in both the fluorescent lifetime and

energy emission estimates increased (Table 1). The CV's of the lifetime and energy

emission estimates decreased respectively from 58.03% and 46.8% (nf = 0.35 and ef=

19.1) to 2.68% and 1.61% (nf= 0.0 and ef= 3812). In all the simulations the true values

of _ and A(T)are covered by the 0.95 confidence intervals based on the maximum

likelihood estimates (mean + 2SD). The widths of the 95% confidence intervals (4SD)

fort ranged from 8.4 ns (nf = 0.35 and ef = 19.1) to 0.44 ns ( nf =0.0 and ef= 3812).

The absolute widths of the 0.95 confidence intervals forA(T) increased with increasing

values of A(73 however, the length of the interval as a percentage of A(_ decreased

from 93.6% (nf = 0.35 and ef= 19.1) to 6.6% ( nf =0.0 and ef = 3812) , i.e. twice the

CV's. Due to their low signal to noise ratio the simulations wi ° th ef= 19.1 gave point

estimates of x which agreed least with the intended value of 4.2 ns. The increase in

estimation precision of _ and A(T) with decrease in nf and increase in ef is shown in

Figure 1. The estimated joint density for nf = 0.35 and ef = 19.1 has approximately 10%

of its support on negative values of _ and A(T) because the Gaussian approximation

based on the ML estimates is not restricted to positive values (Figure I A). Across all the

simulations the approximate joint densities of _ and A(T) have slight positive

correlations (0.31 to 0.35) for nf= 0.70 (Figures 1A, D and G) whereas the two estimates

were uncorrelated for nf = 0.0 (Figures 1C, F and I).

Bayesian Analysis

For the Bayesian analysis as nfdecreased and ef increased, the precision in both

the fluorescent lifetime and energy emission estimates also increased (Tables 2 and 3 and

Figure 2). The CV's of the lifetime and energy emission estimates decreased respectively

from 55.03% and 41.51% (nf = 0.35 and ef= 19.1) to 2.69% and 1.61% (nf = 0.0 and ef=
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3812). In all the simulations the true values of x and A(T)are covered by the 0.95

credibility intervals, i.e. the Bayesian equivalent of the 0.95 confidence intervals. For

ef = 952 and 3812 there was very good agreement between the joint probability densities

oft and A(T) and each of their marginal probability densities (Tables 1, 2 and 3). All the

Bayesian probability densities for these values of ef appeared to be Gaussian as

suggested by their plots and the fact that their skewness and kurtosis values are all close

to zero. Similarly, for the simulations in which ef = 191 and nfequal to 0.35 or 0.0, there

was good agreement between the ML and Bayesian probability density estimates

(Figures 1E and 2F, and Figures 2E and 2F).

For ef = 19.1 for all values of nf and for ef = 191 and nf = 0.70 the Bayesian

estimates of the joint probability densities oft and 1(7") are non-Gaussian (Figures 2A,

2B, 2D and 2G). The marginal probability densities for A(T) are nearly Gaussian for these

four combinations of ef and nf and these densities are in very good agreement with their

ML counterparts. The case in which the marginal density is least Gaussian is shown in

Figure 3D. The non-Gaussian nature of the joint probability density stems mostly from

the uncertainty in z as shown in Figures 2A-2D and indicated by the non-zero values for

the skewness and kurtosis obtained in these simulations (Table 2). All four of the

marginal probability densities of T have tails which are skewed to the right, i.e. positive

skewness. In the simulations for ef -- 19.1 and nf = 0.70 and 0.35, the upper bound of

these probability densities is defined by the prior density. The 0.95 credibility intervals

for T in these two simulations extends from 0.14 to 11.4 ns and from 2.3 to 11.7 ns.

These findings suggest that under these experimental conditions the data contain only

minimal information about the molecule's fluorescent lifetime.
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Discussion

Our approachprovidesan exactprobability model of the photon arrival times

observedwith backgroundnoiseand makesexplicit the relationbetweenthe counting

process,arrival time andconditionalarrival time probabilitydensities.This modelavoids

the needto bin dataandextendstheanalysisprovided[7and [] by makingpossibleML

and Bayesiananalyseswhich considerthe backgroundnoise in the estimationof the

excitedspecieslifetime andenergyemission.Both proceduresmeasurethe uncertaintyin

thesequantitiesbasedondatafrom thephotonscollectedfrom singlemoleculein a single

experiment.

Our ML analysis gives explicit formulae for the changein precision of the

lifetime estimatesas a function of the signal intensity,backgroundnoiseand detection

interval. ML analysis of experimental data provides the most efficient use of

experimental information and as such, is the preferredapproachprovided the ML

computationsarenumerically tractablethe experimentis highly informative about the

model parametersrelative to the known prior to the experiment. Inferencesabout

uncertaintyin modelparameterscanbemadefrom ML theoryas long astheappropriate

asymptomaticassumptionsaresatisfied.Contraryto the suggestionby Tellinghuisenet

al., our resultsshowthat ML estimationfor singlemoleculelifetime andenergyemission

and is highly tractableprocedurewhich canbe carried out efficiently using a quasi-

Newton'smethods.Hall andSelingershowedthat whentheobservationinterval is finite

the largesamplepropertiesof theML estimateof T and A are not of order I but of order

,4. Our ML analysis extends their result by showing that the result also hold when the

data consist of a Poisson signal plus Poisson background noise model observed in finite

time.

While the ML and Bayesian procedures will give similar parameter and

uncertainty estimates when the expected signal intensity is large, our simulation study

shows that when the number of detected photons is small, the Bayesian procedures
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providea more reliable uncertaintyassessmentof uncertainty.The Bayesianprocedure

makesit possibleto combineprior informationaboutthemostprobablerangeto _ and A

prior to the experiment with the information on these parameters summarized in the

likelihood. In particular, the Bayesian procedure trades the large sample assumptions

required by the ML error analysis for the more realistic one that the fluorescent lifetime

and energy emission--where the latter is implicitly defined by _ and A--lie within given

intervals. As we have shown, this interval may be specified based on the known

properties of the experimental paradigm. The Bayesian procedure suggests therefore, a

preferred altemative when the expected signal intensity is low and as a consequence, the

large sample assumptions needed to justify the ML analysis cannot be satisfied.

While either the Bayesian or ML procedures works well for analyzing

fluorescence emissions, the Bayesian methods provide more realistic measures of

uncertainty in the fluorescent lifetimes for any combination of background noise and

fluorescence emission. The Bayesian methods should provide more realistic assessments

of uncertainty in fluorescent lifetime estimates in current single molecule flow stream

experiments where the expected fluorescence emission can be in the low to medium

range. Both the ML and Bayesian algorithms can be automated for real-time

applications.
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Appendix

To derive the algorithm we note that the conditional cumulative distribution function

(CDF) of ti given ti_ t is

F(tilti_ I) = I - exp {-f_i i _.(u) + q(u)du} (A.1)

Equation (1) ensures that F(tilti_j) is a proper CDF defined on (t,_l,_). Sequential

application of the inverse CDF algorithm for Monte Carlo sampling gives the following

algorithm:

STEP 0: Set to =0.

STEP 1: Given 6-_ draw r_ a uniform random number on (0,1).

STEP 2: Compute F-l(r,)=t ' from (A.1).

STEP 3: If t'< 7" then set ti =t',ti_l =ti and go to STEP 1, otherwise stop.

The inversion in STEP 2 is computed numerically.
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TABLE 1.

MAXIMUM LIKELIHOOD ESTIMATION SUMMARY:

FLUORESCENT LIFETIME ENERGY EMISSION

ef nf MEAN SD CVx 100% MEAN SD CVx 100%

19.1 0.70 2.86 1.66 58.03 16.60 7.77 46.8 i

19.1 0.35 4.66 2.10 44.97 19.60 5.49 27.99

19.1 0.00 3.22 0.88 27.44 22.10 4.71 21.32

191 0.70 4.10 0.85 20.82 207.25 25.02 12.07

19l 0.35 4.58 0.70 15.29 221.25 17.98 8.12
191 0.00 3.74 0.42 11.22 182.75 13.55 7.41

952 O.70 4.76 O.63 13.25 876.00 55.79 6.37

952 0.35 4.04 0.28 6.88 964.00 38.19 3.96

952 0.00 4.04 0.21 5.3 ! 908.00 30.13 3.30

3812 0.70 4.32 O.12 2.87 3950.00 63.50 1.61

3812 0.35 4.32 0.13 2.93 3880.00 65.78 1.62

3812 0.00 4.24 0. I 1 2.68 3870.00 62,19 1.61
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